The Structure of μ-Oxo-bis[1,1,2-tricyanoethenoxo(triphenyl)antimony(III)] Benzene (2/1)

By G. L. Breneman*
Department of Chemistry, Eastern Washington University, Cheney, Washington 99004, USA

(Received 7 March 1978; accepted 12 October 1978)

Abstract

Sb}\left(\mathrm{C}_{23} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}\right)\right]_{2} \mathrm{O} \cdot \frac{1}{2} \mathrm{C}_{6} \mathrm{H}_{6}, \quad \mathrm{C}_{46} \mathrm{H}_{30} \mathrm{~N}_{6} \mathrm{O}_{3}-\) $\mathrm{Sb}_{2} \cdot \frac{1}{2} \mathrm{C}_{6} \mathrm{H}_{6}$, monoclinic, $P 2_{1} / c, a=11.221$ (2), $b=$ 16.387 (4), $c=24.894$ (7) À, $\beta=100.41$ (2) ${ }^{\circ}$. There are four molecules of $\left[(\mathrm{CN})_{2} \mathrm{C}=\mathrm{C}(\mathrm{CN}) \mathrm{O}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right.$ $\mathrm{Sb}]_{2} \mathrm{O}$ and two molecules of solvent (benzene) per unit cell giving a density of $1.47 \mathrm{Mg} \mathrm{m}^{-3}$. The approximate density measured by flotation is $1.5 \mathrm{Mg} \mathrm{m}^{-3}$. Each molecule contains two O-bridged Sb atoms having approximately trigonal-bipyramidal geometry. There are phenyl groups in the three equatorial positions and O atoms in the two axial positions. One of these O atoms is bridging, and the other is in the $(\mathrm{CN})_{2} \mathrm{C}=$ $\mathrm{C}(\mathrm{CN}) \mathrm{O}$ group.

Introduction. Weissenberg photographs showed $2 / m$ Laue symmetry with systematic absences $k=2 n+1$ for $0 k 0$ and $l=2 n+1$ for $h 0 l$. The data were collected on an automated Picker diffractometer using the $\theta-2 \theta$ scan technique with Zr -filtered Mo $K \alpha$ radiation. Each scan was 1.6° in 2θ with a counting time of 3 s per 0.05° step. A 30 s background was measured at the beginning and end of each scan. 5784 independent reflections were measured in the range $2 \theta<45^{\circ} ; 4870$ reflections had $|F| \geq \sigma(F)$. The needle crystal used was $0.16 \times 0.17 \times 0.46 \mathrm{~mm}$. Absorption corrections were not applied ($\mu=1.25 \mathrm{~mm}^{-1}$). The estimated range of transmittance factors was 0.78 to 0.85 . The Sb positions were found on a Patterson map. Successive electron density maps were used to find the remaining non-H atom positions. Difference maps did not show the locations of H atoms with any certainty. In the final cycle of full-matrix refinement using $|F| \geq \sigma(F)$ only Sb and O atoms were refined anisotropically and H -atom contributions were not included. Refinement was halted at this point due to the computer cost for a structure of this size. $R=0.105$ for all reflections and $R_{w}=0.078$ for all reflections $\geq 1 \cdot 0 \sigma(F)$. These values are a little high as a result of not including H atoms, absorption corrections, and anisotropic temperature factors for most of the atoms. $\sigma(I)^{2}=\mathrm{TC}+2 \cdot 56 \mathrm{BC}+(0.04)^{2} I^{2}$

[^0]where $\mathrm{TC}=$ total count, $\mathrm{BC}=$ total background count, and $I=\mathrm{TC}-1.6 \mathrm{BC}$. Scattering factors for neutral atoms were obtained from International Tables for X ray Crystallography (1962). Anomalous terms were not included. Computer programs were part of a local library (Anderson, 1971; Caputo, 1975). The final positional parameters are listed in Table 1. \dagger

Discussion. This work was an attempt to verify the tentative structure assigned to the 2:2 adduct of tetracyanoethylene (TCNE) and triphenylphosphine (TPP) prepared and characterized by Douglas (1972). Since suitable crystals could not be prepared, attempts were made to substitute As and Sb for the P atom. Needles of a modified Sb analog were obtained. Even though three O atoms replaced two CN^{-}groups of the original compound, the structure analysis was undertaken in hopes of gaining information about (TCNE.TPP) ${ }_{2}$.

[^1]

Fig. 1. One molecule of μ-oxo-bis[1,1,2-tricyanoethenoxo(triphenyl)antimony(III)] and one solvent molecule.
© 1979 International Union of Crystallography

Table 1. Final atomic parameters (the standard deviation in the last digit is given in parentheses)

	x	y	z		x	y	z
Sb (1)	0.57799 (7)	$0 \cdot 25678$ (4)	$0 \cdot 24074$ (3)	C(20)	0.686 (2)	0.4827 (9)	$0 \cdot 1338$ (6)
Sb (2)	0.31257 (7)	0.21130 (5)	0.13455 (3)	C(21)	0.774 (2)	0.422 (1)	$0 \cdot 1494$ (6)
O(1)	0.7773 (7)	0.2699 (4)	0.2890 (3)	$\mathrm{C}(22)$	0.750 (1)	$0 \cdot 3536$ (8)	$0 \cdot 1839$ (5)
O(2)	0.2029 (7)	$0 \cdot 1594$ (4)	0.0548 (3)	C(23)	0.525 (1)	0.2773 (6)	0.3158 (4)
$\mathrm{O}(3)$	0.4077 (6)	$0 \cdot 2518$ (4)	$0 \cdot 2023$ (3)	C(24)	0.423 (1)	0.2334 (7)	$0 \cdot 3254$ (5)
N(1)	1.093 (1)	$0 \cdot 1644$ (8)	0.4204 (5)	C(25)	0.379 (1)	$0 \cdot 2463$ (8)	0.3745 (6)
N(2)	1.073 (1)	0.3261 (7)	$0 \cdot 2810$ (4)	C(26)	0.442 (1)	$0 \cdot 3028$ (8)	0.4130 (5)
N(3)	0.737 (1)	0.1397 (8)	0.3878 (5)	C(27)	0.541 (1)	$0 \cdot 3452$ (8)	0.4025 (5)
N(4)	-0.178 (1)	0.0910 (8)	-0.0513 (5)	C (28)	0.584 (1)	$0 \cdot 3322$ (7)	$0 \cdot 3529$ (4)
N(5)	-0.058 (1)	0.1933 (8)	$0 \cdot 1003$ (6)	$\mathrm{C}(29)$	0.452 (1)	$0 \cdot 1810$ (6)	0.0918 (4)
N(6)	0.188 (1)	0.0751 (8)	-0.0741 (6)	$\mathrm{C}(30)$	0.529 (1)	$0 \cdot 2424$ (7)	0.0800 (5)
C(1)	0.841 (1)	0.2326 (7)	0.3277 (5)	C(31)	0.631 (1)	0.2195 (9)	0.0551 (6)
C(2)	0.963 (1)	0.2401 (6)	$0 \cdot 3402$ (4)	C(32)	0.646 (1)	0.1383 (8)	0.0467 (5)
C(3)	1.035 (1)	$0 \cdot 1977$ (9)	0.3853 (6)	C(33)	0.575 (1)	0.0744 (9)	0.0575 (6)
C(4)	1.025 (1)	0.2879 (7)	0.3078 (5)	C(34)	0.469 (1)	0.0980 (8)	0.0821 (3)
C(5)	0.786 (1)	$0 \cdot 1824$ (9)	0.3612 (6)	C(35)	0.222 (1)	$0 \cdot 1230$ (6)	$0 \cdot 1725$ (4)
C(6)	0.092 (1)	$0 \cdot 1467$ (8)	0.0352 (6)	C(36)	0.208 (1)	0.0425 (7)	0.1536 (5)
C(7)	0.045 (1)	$0 \cdot 1152$ (8)	-0.0120 (6)	C(37)	$0 \cdot 145$ (1)	-0.0130 (8)	$0 \cdot 1813$ (5)
C(8)	-0.083 (2)	$0 \cdot 1065$ (9)	-0.0319 (6)	C(38)	0.099 (1)	0.0122 (8)	0.2257 (5)
C(9)	-0.001 (1)	$0 \cdot 1703$ (9)	0.0695 (6)	C(39)	$0 \cdot 114$ (1)	0.0928 (8)	$0 \cdot 2449$ (5)
C(10)	0.127 (2)	0.0942 (9)	-0.0451 (6)	C(40)	$0 \cdot 174$ (1)	$0 \cdot 1489$ (7)	$0 \cdot 2175$ (5)
C(11)	0.634 (1)	$0 \cdot 1376$ (7)	0.2229 (4)	C(41)	$0 \cdot 218$ (1)	0.3221 (6)	$0 \cdot 1167$ (4)
C(12)	0.739 (1)	0.1274 (8)	$0 \cdot 2007$ (5)	C(42)	$0 \cdot 172$ (1)	$0 \cdot 3432$ (7)	0.0625 (5)
C(13)	0.768 (1)	0.0482 (8)	$0 \cdot 1850$ (5)	C(43)	$0 \cdot 104$ (1)	0.4159 (8)	0.0531 (5)
C(14)	0.695 (1)	-0.0154 (9)	$0 \cdot 1949$ (6)	C(44)	0.087 (1)	0.4635 (8)	0.0967 (6)
C(15)	0.587 (1)	-0.0051 (8)	0.2138 (5)	C(45)	0.135 (1)	0.4429 (8)	$0 \cdot 1516$ (5)
C(16)	0.557 (1)	0.0760 (7)	0.2307 (5)	C(46)	0.202 (1)	$0 \cdot 3699$ (7)	$0 \cdot 1615$ (5)
C(17)	0.634 (1)	$0 \cdot 3543$ (6)	$0 \cdot 1973$ (4)	C(47)	$0 \cdot 536$ (2)	$0 \cdot 423$ (1)	-0.0188 (6)
C(18)	0.545 (1)	0.4141 (8)	0.1793 (5)	C(48)	0.425 (2)	0.432 (1)	-0.0023 (6)
C(19)	0.575 (1)	0.4808 (9)	$0 \cdot 1472$ (6)	C(49)	$0 \cdot 387$ (1)	0.509 (1)	0.0161 (6)

Table 2. Bond lengths (\AA) (the standard deviation in the last digit is given in parentheses)

Left side Fig. 1

$\mathrm{Sb}(1)-\mathrm{O}(3)$	$1.978(8)$
$\mathrm{Sb}(1)-\mathrm{O}(1)$	$2.350(9)$
$\mathrm{O}(1)-\mathrm{C}(1)$	$1.25(2)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.36(2)$
$\mathrm{C}(2)-\mathrm{C}(3)$	$1.44(2)$
$\mathrm{C}(2)-\mathrm{C}(4)$	$1.40(1)$
$\mathrm{C}(1)-\mathrm{C}(5)$	$1.39(2)$
$\mathrm{N}(1)-\mathrm{C}(3)$	$1.13(2)$
$\mathrm{N}(2)-\mathrm{C}(4)$	$1.12(1)$
$\mathrm{N}(3)-\mathrm{C}(5)$	$1.17(2)$
$\mathrm{Sb}(1)-\mathrm{C}(11)$	$2.12(1)$
$\mathrm{Sb}(1)-\mathrm{C}(17)$	$2.09(1)$
$\mathrm{Sb}(1)-\mathrm{C}(23)$	$2.09(1)$

Right side Fig. 1

$\mathrm{Sb}(2)-\mathrm{O}(3)$	$1.943(7)$
$\mathrm{Sb}(2)-\mathrm{O}(2)$	$2.302(8)$
$\mathrm{O}(2)-\mathrm{C}(6)$	$1.26(2)$
$\mathrm{C}(6)-\mathrm{C}(7)$	$1.30(2)$
$\mathrm{C}(7)-\mathrm{C}(8)$	$1.44(3)$
$\mathrm{C}(7)-\mathrm{C}(10)$	$1.38(2)$
$\mathrm{C}(6)-\mathrm{C}(9)$	$1.52(2)$
$\mathrm{N}(4)-\mathrm{C}(8)$	$1.12(2)$
$\mathrm{N}(6)-\mathrm{C}(10)$	$1.13(2)$
$\mathrm{N}(5)-\mathrm{C}(9)$	$1.15(2)$
$\mathrm{Sb}(2)-\mathrm{C}(29)$	$2.10(1)$
$\mathrm{Sb}(2)-\mathrm{C}(35)$	$2.09(1)$
$\mathrm{Sb}(2)-\mathrm{C}(41)$	$2.11(1)$

Each complex molecule (see Fig. 1) contains two approximately trigonal-bipyramidal Sb atoms bridged by an O atom through one axial position. The three phenyl groups on each Sb are in the equatorial positions and the remaining axial position is filled by an O that has replaced one of the cyano groups on the TCNE. The solvate benzene molecules are located on the centers at $\frac{1}{2}, \frac{1}{2}, 0$ and $\frac{1}{2}, 0, \frac{1}{2}$. Bond lengths in the benzene molecules are normal. Other bond lengths are listed in Table 2. The C-O bond lengths (1.25 and
$1.26 \AA$) are unrealistically short (being the same as that of a carbonyl group) while the non-bridging $\mathrm{Sb}-\mathrm{O}$ bonds ($2 \cdot 35$ and $2 \cdot 30 \AA$) fall outside the normal $\mathrm{Sb}-\mathrm{O}$ bond range ($1.89-2.27 \AA$) indicating the O atom positions may actually be closer to the Sb atoms. The bridging $\mathrm{Sb}-\mathrm{O}$ bond lengths are normal. The $\mathrm{C}(6)-\mathrm{C}(9)$ bond ($1.52 \AA$) is suspiciously long compared to the five other similar bonds (average $1.41 \AA$).

The phenyl groups show distortion from $D_{6 h}$ symmetry. The average bond lengths and angles for all six phenyl groups are shown below.

The angle at the C atom attached to Sb of 123.3° puts the group attached to the phenyl ring among the strongly electron-withdrawing groups listed by Domenicano, Mazzeo \& Vaciago (1976).

Bond angles in the benzene are normal. Other angles are listed in Table 3. The complex molecule seems to involve some steric hindrance, as there is distortion from what would be expected. All six phenyl groups are bent away from the equatorial positions toward the

$$
\mathrm{C}_{46} \mathrm{H}_{30} \mathrm{~N}_{6} \mathrm{O}_{3} \mathrm{Sb}_{2} \cdot \frac{1}{2} \mathrm{C}_{6} \mathrm{H}_{6}
$$

Table 3. Bond angles $\left(^{\circ}\right.$) (the standard deviation in the last digit is given in parentheses)

$$
\mathrm{Sb}(1)-\mathrm{O}(3)-\mathrm{Sb}(2) \quad 140 \cdot 0(3)
$$

Left side Fig. 1

$\mathrm{O}(1)-\mathrm{Sb}(1)-\mathrm{O}(3)$	$176 \cdot 6(3)$
$\mathrm{C}(1)-\mathrm{O}(1)-\mathrm{Sb}(1)$	$135 \cdot 1(7)$
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(5)$	$120(1)$
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	$123(1)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(5)$	$117(1)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	$123(1)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(4)$	$120(1)$
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(4)$	$117(1)$
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{N}(1)$	$179(1)$
$\mathrm{C}(2)-\mathrm{C}(4)-\mathrm{N}(2)$	$179(1)$
$\mathrm{C}(1)-\mathrm{C}(5)-\mathrm{N}(3)$	$178(2)$
$\mathrm{C}(11)-\mathrm{Sb}(1)-\mathrm{O}(1)$	$84.3(4)$
$\mathrm{C}(17)-\mathrm{Sb}(1)-\mathrm{O}(1)$	$81 \cdot 1(4)$
$\mathrm{C}(23)-\mathrm{Sb}(1)-\mathrm{O}(1)$	$85 \cdot 8(4)$

$\mathrm{O}(3)-\mathrm{Sb}(2)-\mathrm{O}(2)$	$178.2(3)$
$\mathrm{Sb}(2)-\mathrm{O}(2)-\mathrm{C}(6)$	$136.7(7)$
$\mathrm{O}(2)-\mathrm{C}(6)-\mathrm{C}(9)$	$118(1)$
$\mathrm{O}(2)-\mathrm{C}(6)-\mathrm{C}(7)$	$128(1)$
$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(9)$	$114(1)$
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	$124(1)$
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(10)$	$116(1)$
$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(10)$	$120(1)$
$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{N}(4)$	$171(2)$
$\mathrm{C}(7)-\mathrm{C}(10)-\mathrm{N}(6)$	$176(2)$
$\mathrm{C}(6)-\mathrm{C}(9)-\mathrm{N}(5)$	$170(2)$
$\mathrm{C}(29)-\mathrm{Sb}(2)-\mathrm{O}(2)$	$78.8(4)$
$\mathrm{C}(35)-\mathrm{Sb}(2)-\mathrm{O}(2)$	$84.6(4)$
$\mathrm{C}(41)-\mathrm{Sb}(2)-\mathrm{O}(2)$	$88.0(4)$

bridging O atom by an average of $6 \cdot 2^{\circ}$. The angles around the O atoms are normal: $\mathrm{Sb}(1)-\mathrm{O}(3)-\mathrm{Sb}(2)$, $140 \cdot 0^{\circ} ; \mathrm{C}(1)-\mathrm{O}(1)-\mathrm{Sb}(1), \quad 135 \cdot 1^{\circ} ; \quad \mathrm{Sb}(2)-\mathrm{O}(2)-$

C(6), 136.7°. This structure sheds no light on the (TCNE.TPP) ${ }_{2}$ structure, since the bonding between groups is through O atoms that are not present in the other adduct.

I would like to express my appreciation to Dr R. D. Willett and his research group at Washington State University for assistance in using their equipment and computer programs and to Dr J. E. Douglas and Merritt Olson for furnishing crystals of the compound.

References

Anderson, D. N. (1971). PhD Thesis, Washington State Univ.
Caputo, R. E. (1975). PhD Thesis, Washington State Univ.
Domenicano, A., Mazzeo, P. \& Vaciago, A. (1976). Tetrahedron Lett. 13, 1029-1032.
Douglas, J. E. (1972). Inorg. Chem. 11, 654-656.
International Tables for X-ray Crystallography (1962). Vol. III, pp. 202-207. Birmingham: Kynoch Press.

Acta Cryst. (1979). B35, 733-736

Structure of the Potassium Methoxide Adduct of \boldsymbol{s}-Trinitrobenzene, a Meisenheimer Complex

By Riccardo Destro, Tullio Pilati and Massimo Simonetta
Istituto di Chimica Fisica e Centro CNR, Università, Via Golgi 19, 20133 Milano, Italy

(Received 7 July 1978; accepted 10 November 1978)

Abstract

K}\left(\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{~N}_{3} \mathrm{O}_{7}\right) \cdot \frac{1}{2} \mathrm{H}_{2} \mathrm{O}, \quad \mathrm{C}_{7} \mathrm{H}_{6} \mathrm{KN}_{3} \mathrm{O}_{7} \cdot \frac{1}{2} \mathrm{H}_{2} \mathrm{O}\), $M_{r}=292 \cdot 3$, monoclinic, $C 2 / c, a=12.411$ (2), $b=$ 9.051 (2), $c=19.565$ (3) $\AA, \beta=101.50$ (2) ${ }^{\circ}, Z=8$, $D_{x}=1.803 \mathrm{Mg} \mathrm{m}^{-3}$ (not measured). Data were collected on a computer-controlled four-circle diffractometer (Mo $K \alpha$ radiation, $\lambda=0.71069 \AA$, graphite monochromator), $F(000)=1192, \mu(\mathrm{Mo} K(x)$ $=0.390 \mathrm{~mm}^{-1}$. Final $R=0.045$ for 2999 observed (I >0) reflexions, 0.049 including unobserved. The methoxy group is covalently bound to the ring of s trinitrobenzene at a C atom which attains tetrahedral ($s p^{3}$) configuration. To relieve overcrowding between OCH_{3} and the two neighbouring nitro groups, the anion assumes a butterfly shape.

Introduction. Meisenheimer complexes, the covalentlybound addition products resulting from reactions of aromatic nitro compounds with bases or other nucleo-
philic species, have been extensively studied by spectroscopic methods (for a review see Crampton, 1969). The molecular geometry of some of them has also been elucidated by X-ray diffraction. To our knowledge, the X-ray structure determinations so far reported concern only dialkoxy adducts, i.e. complexes derived from addition of an alkoxide ion to a benzene ring at a position which already carries an alkoxy group. They include: $1,1^{\prime}$-diethoxy-2,4,6-trinitrobenzene potassium or caesium (KDETNB; Destro, Gramaccioli \& Simonetta, 1968); 1,1'-dimethoxy-2,4,6-trinitrobenzene potassium dihydrate (KDMTNB; Ueda, Sakabe, Tanaka \& Furusaki, 1968); and 4,4'-dimethoxy-5,7dinitrobenzfurazan (KDMDNBF; Messmer \& Palenik, 1971). The present work is the first crystallographic study of an unsymmetrically substituted complex, obtained by addition of a methoxide ion to s-trinitrobenzene. Methanolic solutions of the adduct have been

[^0]: * Final data collection and computer analysis done at Washington State University, Pullman, on an NSF Small College Teacher Summer Research Grant.

[^1]: \dagger Lists of structure factors and thermal parameters have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 33956 (13 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH 1 2HU, England.

